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(R) I f  you get the equivalent of the tables, or so much of 
them as are interesting or useful to  you, in the monthly sec- 
tion reports, or the Annual Report of the Chief of Bureau, in 
form more serviceable to you, please so state. 

(C) Is there any feature or subject not yet introduced into 
the REVIEW that you wish us to take up ? 
(1)) Is your copy of the REVIEW destroyed, preserved for 

future use, or deposited in some library? 

Rwtangulnr vooraliiiater.. ....... 
C‘yliudrical cvorrliuates ......... 
Polar coordinates. ............... 
Rertangolar velocity ........... 
Cylindrical velovity ............. 
Polar velocity . . . . . . . . . . . . . . . . .  

STUDIES ON THE VORTICES IN THE ATMOSPHERE OF 
THE E A R T H .  

1.-THE APPLICATION OF THE THEORY OF VORTEX RIOTION 
TO THE FUNNEL-SHAPED WATERSPOUT AT COTTAGE CITY, 
AUGUST 19, 1896. 

By Prof. r R A N K  H. DK.ELIB\\. 

INTRODUCTVRY REMARKS. 

The purpose of the series of papers on the tmherruodynamics 
of the atmosphere, which appeared in the MONTHLY WEATHER 
REVIEW during the year 1906, was to indicate the distribution 
of the masses of air of different temperatures in the neighbor- 
hood of the axes of cyclones, anticyclones, and a typical water- 
spout, and to develop the formulas which are useful in (lis- 
cussing the energy contained in them, available in the restora- 
tion to a thermal equilibrium under the action of gravity. 
When a sheet of relatively cold air overlies a sheet of relatively 
warm air there will be an interchange of position, and in 
changing places there will be a development of certain stream 
lines which it is important to understand as fully as possible. 
Such a distribution of stratified air is an eacient cause of 
the formation of the vortices popularly called the tornado, the 
waterspout, and the hurricane. There are two types of such 
vortices prevailing in the earth’s atmosphere, each of which is 
represented in the Cottage City waterspout of August 19, 
1896.’ The first type is seen in the second appearance, 8s on 
Chamberlain’s photograph, 2d A, and the second type is 
found in the third appearance, as on Chamberlain’s photo- 
graph, 3d A. It mill  be shown that the St. Louis tornado, 
May 27, 1896, and the De TVitte typhoon, L4~1g11st 1-3, 1901, 
belong to the first, or dumb-bell, type, while many small funnel- 
shaped tornadoes belong to the second type. These typical 
examples will be fully worked out, and the velocities, radial ( I / ) ,  

tangential ( u ) ,  and vertical (xi), computed, together with the 
various relations connecting them together. When two 
masses of air of different temperatures lie side by side the 
stream lines which are generated in the thermal flow are of a 
very different type from those of the preceding cases, in so 
far as the cyclone represents a‘pure vortex motion of any 
type. The general vortices in the earth’s atmosphere or other 
atmospheres belong to still other classes. These vortices 
were summarized on pages 512,513, of the International Cloud 
Report,* and in the MONTHLY WEATHER REVIEW, January, 1904;’ 
but in this present series of papers an attempt will be made 
to find the constants and the velocities existing in these 
specific examples. The final step in the solution of this class 
of problems will consist in correlating the observed tempera- 
ture and pressure conditions with these computed velocities. 
It will be important to develop the computations in detail, so 
that meteorologists may be able to discuss the circulations of 
the air as practical examples of the interchange of energy in 
the atmosphere. The knowledge already attained regarding 
the temperatures in the earth’s atmosphere justifies us in 
making an effort to advance these fundamental problems in 
dynamical meteorology. It seems to me quite probable that 
the best way to determine the physical constants belonging to 

‘See Monthly Weather Review for July, 19OC, p. 307-315, and plates. 
2 Rrnort of the CWef of the Weather Bureau. 1898-99. Vol. 11. Here- 
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the sun’s atmosphere, i. e., the specific heats and the temyera- 
ture gradients, will be by utilizing the visible surface velocities 
of the solar vortex, which is a function of the same. 

THE FORMULAS OF VOltTEX MOTION. 

The subject of vortex motion applicable to the earth’s atmos- 
phere may he conveniently referred to in the following works: 

1. Basset’s Treatise on Hydrodynamics, Vol. 11, pp. 34-91, 
1888. 

2. Lamb’s Hydrodynamics, pp. 222-205, 1595. 
3. Wien’s Lehrbuch der Hydrodynamik, pp. 54-53, 1900. 
4. Bigelow’s Summary of Formulas, Cloud Report, pp. 

Since the notation diBers in these treatises the following 
Son-,513, 1898. 

table of equivalents is added: 

TABLE 1. -Equiz~nbkt sy8teins of notation. 

Eight hand. 
+ $ 

+ +I 
+ 1. 

Jf, S, L 

T 
I‘ 

Lau11,. W e n .  Bigelow. 

Bigelow and Wien take the z-axis as the axis of rotation in 
cylindrical coordinates, while Basset and Lamb use the x-axis. 
W e n  has left-hand rotation and the others right-hand. 

*.Y 

$+ X k 
t cc 

FI~:. 1.-Eectangular coordinates of any point are T, y, 2. Cyliiidrical ro- 
Velocities fit that poiut t ~ , + )  ordinates of the smie point are a, o. z. 

are u, v ,  w. Angles at that point (3, $j are i, 11. 
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TABLE 2.-Equathna in cylindrical coordinates. 
(Compare equations 152, 160, 161, 162, 163, 1 6 5 . .  . . . .pp. 497, 499, 500, Cloud Report.) 
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I a.r= Ira/= OW. 

\. i )  z = 1 L 8 t  = 0.. 

I 

Linear displacements. Cloud Report 152. 1 0 y= vat = may. 
. I  

(U = 0. 

Angular velocities and forces in symmetrical motion ~ ,,),, = 0. about the z-axis. Cloud Report 160. I "  

11 

m 
I Wa = + -. i 

3: = m cos p. 

y = m sin 9. 

d. I' I I (  = - = cos (r - ill sin (r. j tlt 

i Linear velocities. Cloud Report 153. 
= dy = I ( l  sin + Ill Cos (r. l d t  

I 
Linear velocities with moving axes in cylindrical co- , + :rill,$. 

- n u 2  + yw,. 

iJf ordinates. Cloud Report 160. 
111 = -- 

I at 

iJi/r D!l -- 

dlC i l l / ,  
a z  a m '  

i l v  i/ie LI 

I 
Angular velocities omitting the subscripts in I ~ ~ , P ~ ,  i ( i l .  I %u2= - -- 

2w = 
a m  - m i + m *  

01, 311 I>-' + I (  -- + /I1 - - 
d m  a; m' 

D L' i) 11 at7 / ( I '  

at d m  

- - 

Cloud Report 162. 

ar-  ilP 3lC 
Om ,lam at 

0 = - + I1 ;- + 10 

I a= pi13 Dt 0 2  

G + m *  
iJ70 r3 io 

General equations of motion symmetrically I I --- 
about the z-axis. Cloud Report 161. I i, T' r:, P i l l / *  

-1- 7 I  r:,m + 1r1 - . --- -- - 

1r I '  I 
General equations of motion on the rotary earth. + 2 ti cos o . 1 1  + - + l.11. 

Cloud Report 165. m 

(9) It is convenient usually to take the positive direction of 
the z-axis upward, but to place the plane .G y below the 
sea-level surface. 

The velocity coo~diiintes I ( ,  I - ,  717 i n f o m ~ s  c!f the cwrent frci~ctioit #. 
I n  discussing problems in vortex motion, it is convenient to 

use the current function C, which is deduced from the equation 
of continuity. This equation is: 

die 1C ow 
a n  m d3 
-+  + - = o ,  

and i t  may take the form, 

This is satisfied by substituting the velocities, 

( l a )  

which are known a8 Stokes's functions. 
I n  order to satisfy the second equation of motion in 161, 

Of1 
where the motion is steady and at = 0, the value of u is, 

BO that # = u z  is the constant in vortex motion. 

1 a+i)+ 1 f3+ 0 1 D+rY+ 1 a+ + (14) ---- -- -+7y;.--- - --o. 
m ~ i , m  ilz + m i)z mz 

Substituting these values of I ( ,  i', io in (161)?, we have, 

m-0 ,  ctn m az ma- 

In the case of uteady motion, if the second equation of 161 
is multiplied by m, we have, 
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a m  
a5 

Since - = 0, it may also be written, 

a O 
1l (nu) + 2 0 , p U )  = 0. 

This shows that + = urn = constant is a solution and de- 
velops the vortex law required. Any function of + which 
satisfies this equation will be a solution of the second equa- 
tion of motion. 
( 1 7 )  Hence, mu =f(+) = an arbitrary function of +, is a solu- 
tion of the second equation of motion. 

We can eliminate the potential and pressure terms from the 
first and third equations of motion by differentiating the first 
to c, the third to m, subtracting and substituting the angular 

atr 8zu 
velocity, 2tu2 = - - - in terms of $. 05 Om' 

cepts we obtain the general vortex equation. 

Following these pre- 

I =  2 11 cos 17, and the coefficient of friction X., is deduced to be, 
l l f l  

for -- ift - ('7 

x. 
tan i = ~- (26 )  1' 

A+ 2 
This signifies that the cause of the departure of the currents 

entering the closed isobars is the effect of the friction and 
the deflecting force upon the tangential component. But we 
shall show that the angle i is due to an entirely different set 
of circumstances as a primary cause, tho its normal value on a 
given level or  stratum may be slightly modified by these two 
auxiliary forces. 

Tilr Germa,i schtion.-The second equation of motion has 
generally been cliscust in a different manner by the German 
meteorologists, who have used two other solutions of which it 

The following auxiliaries are found from i t  and m, 

Making the substitutions, we obtain 

Hence, 

is capable when the fuller form is employed, namely, 
do u u  + 11I+kIkO. z +  m 

These two-type solutions are common to the works of Gulcl- 
berg and Mohn. Sprung, Oberbecli, Pockels, and others, wherein 
Oherbeck and Pockels have introduced modifying factors into 
the simple solution of Guldberg and Mohn or Sprung. One 
solution is taken applicable to the inner part of a cyclone, and 
the other to the outer part. 

Any function of + satisfying this equation is capable of giv- 
ing a vortex motion. In  the application to the atmospheres 
of the earth and the sun some simple forms will be considered 
and illustrated by examples from the observations. Inasmuch 
as it is not possible to make observations in all parts of the 
tornadoes, hurricanes, and cyclones, it has been very dificult 
to secure the values of the constants entering into the formu- 
las, but it is thought that this trouble has now been overcome. 
The simultaneous operation of the current function $ in equa- 
tions (17) and (23) is necessary in order to combine the veloci- 
ties 11, u, 70 in a consistent vortical motion. That we may mxlie 
it clear in what respects the solutions adopted in these papers 
differ from other solutions found in previous discussions, the 
following brief recapitulation is summarized from my Cloud 
Report, 1898-99, p. 596-603. 

Ferrel's so1iction.-Ferrel took the second equation of ( 8 ) ,  
and for assumed symmetry about the z-axis with no friction, 
ku=O, reduced it to the form, 

n u  
(24)  dt 

of radius mo, he deduced the tangential velocity 

-- + (211 cos 0 - j - v , )  u =o. 
From this by integration within a fist cylindrical surface 

(25)  

at  the distance m froin the asis. The angle of divergence of 
the stream line on the horizontal plan from the tangent to 
the isobar, in terms of the coeacient of the deflecting force, 

First scrlution Second solution 
(inner part). (,outer part). 

I '  C 
[ I = - -  1 / =  - 2 i;l. m 

Radial velocity 

i. c I C  

h- r ; l z  Tangential relocity P =  + I . mz.  1'= + 
Vertical velocity l / l =  + CZ. I I k O  

x - - 6  f 

11 X - - - c .  I/ x. 
= - - 

1. z 11 1,- Angle of inclination, tan i = 

Current function (11.  it.) el = 

= - ~. tan t= 

m? z.  +,= ('2 
c I 2 

c 1  1 
2 x.-c d k  Current function ( 1 7 )  e2 = m ' c .  + , = P  z 

It is seen that these solutions depend upon three constants: 
X; the coeflicient of friction; I ,  the coeficient of the deflecting 
force due to the earth's rotation; and c, the coefficient of the 
vertical distance z from the plane of reference, in order to 
produce the observed angle of inclination. The current func- 
tions derived from these solutions are, however, inconsistent. 
If Stokes's functions be applied to I I  and ctr in the first solution, 

then +,= rn2 z ;  hit if the vortex lam, += jqm=constant, is 
I '  R 

used, then 4, = ~ m' z, which is a different value of $. In  2 k - C  
the saiue way, by means of Stokes's functions, ( ( I  i o )  give for the 

c 
2 
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1 
k 

’ - u m z c - - g =  current function +l=cz, while the vortex law c[¶- 

a constant, but differing in value from +l. Hence, ‘.“* = const. 
+,; or = coast. 9,. In nature, there is no outer part 
of a cyclone where I O =  0, and there is no boundary where 
the law of motion changes suddenly from the parabolic 

type, - = constant, to the hyperbolic type, 1 7  m = constant, as 

is called for in these solutions. Nor is i t  possible that the 
natural values of k, 1, c can account for the observed angle i 
in all levels, and they are by no means constant even on the 
same vortex tube. 

tJ 

m 

SOLUTION FOR THE FUNNEL-SHAPED VORTEX TUBE. COTTAGE CITY 
WATERSPOUT, CHAMBERLAIN 3d A. 

Since my solution for the vortex represented in Chamber- 
lain’s photograph 3d A of the Cottage City waterspout, MONTHLY 
WEATHER R,EVIEW, July, 1906, Plate VIII, approximates the type 
which is involved in the first solution, inner part, as applied 
by the German meteorologists to the cyclone, I will take up 
that problem before the others, and will then illustrate the other 
type by Chamberlain’s 2d A, Plate I, the St. Louis tornado, and 
the De TVitte typhoon. The ocean cyclone and the land cyclone 
are impure vortices of the latter type. Unfortunately, by 
adopting the present procedure i t  is not possible a t  the outset 
to demonstrate my method of fincling the values of the con- 
stants required in the evaluation of the formulas in this special 
case. Having only the photograph of the tube, which gives 
the outline of the vortex, but no idea of the velocities in the 
several directions, i t  has been exceedingly clificult to discover 
what the vortex constants are in nature. They mere finally 

obtained by starting with the hurricane, and advancing thru 
the tornado and the second waterspout vortex to the first type 
now under consideration. Many efforts were made before this 
successful result was obtained, the outcome being now checked 
by reproducing a vortex whose dimensions agree closely 
with that represented in the photograph when the latter is 
translated into meters by the scale already found to apply, 
namely, 1 millimeter on the pliotoyraph = 15.3 meters at the water- 
spout. The derivation of the formulas is very simple after the 
form of the vortex function has been determined. That form 
which is applicable to the funnel-shaped vortex tube is, 
( 3 3 )  q = Cm’z. 

From this formula me find by differentiation, 

(34)  

( 3 5 )  

the general vortex equation ( 2 3 )  is satisfied. 
obtained from the centrifugal force. 
Ca’z, we have, 

The last term is 
Thus, s incef (  $)= cia= 

( 3 7 )  

The structure of the vortex is such that the following rela- 
tions hold true on the same level, as will be illustrated in the 
discussion of the Cottage City waterspout. 

m I ,  = the ratio between successive tubes. Ratio. 

Constant. 

Radius. 

log / I  = log __ 
(38) “T I+  1 

log 4, = log Co + log / I  = log co + 2tf log m . 
%+l 

m 

mn+1 

(39) 

(-1”) log m,, = log ino - I t  log p = log no - t1 log --L . 

Radial. 

n 1 1  Tangential. log P I ,  = log ”, + tf log / I  = log + 71 log ~ . 
(42) “ n + I  

(43) m,,+1 

(-16) mnt1 

= log to - 212 log J . 

(47) 

I, Vertical. log W j 1  = log tu, + al l  log / I  = log “lo + 2n log ~ . 

(44) Horizontal. log tan i,, = constant. 

m 
Vertical. 

Time. 

log tan q,, = log tan qo + t i  log p = log tan 7, + I I  log 2 

m 
log f,, = log f ,  - 2tl log // 

m,1+1 
(46) 

2 
Volume. Volume = x ( n18 - m:+] ) w,,b = constant. 

Centrifugal. log ( ; ) , l  = log (;) + 3/t log fl = log (;) + 3t1 log __ m,, . 
0 mn + 1 

Rl, - f i t ,  + I  “ I ,  Pressure. log x---Bl, - log 
11-1 mn+l 

- m1, - log p = log ~ . 
mn+1 

For?rii/las f o r  the radial, tangential, atid wrticnl tielodips. near the base of the cumulus cloud from which the vortex is 
projected; for the latter the reference plane is below the sur- 

It will be convenient to use different coordinate axes in face of the sea, ancl the 
solving the two types of Vortices represented resFective1S’ by for this change in the direction of the coordinates will clearly 
the funnel-shaped and the dlllnb-bell-shal)ed tubes, PhO to- appear in the disc11ssion of the examples of the duml)-bell 
graphed in Chalnberlain 3d A and 2d A. For the former the 
z-axis should be taken positive downward from a reference plane 

is positire ,,ploard. The 
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Number of column. 
_ ~ _ _ _ _  

Current function. 

Constant of vortices. 

Radial velocity. 

Tangential velocity. 

Vertical velocity. 

ve 

1 2 3 4 5 6 

The formulas for the radial ( u ) ,  tangential (ti) ,  and vertical 
( 1 0 )  velocities are given in Table 3, together with several 
check combinations. 

Having adopted the form of current function, $11, then the 
radial and vertical velocities are found from Stokes's functions 
and the tangential velocity from the vortex lam, p =  vm= 
constant. It is evident that one value of the constant C holds 
true for a single stream line (rnz), but changes its value from 
one vortex tube to another. Thus, for the lines in the Cottage 
City waterspout, we hare for- 

Line (1) C, = 0.001111. 
Line (3) Cf, = 0.003662. 
Line ( 8 )  f'; = 0 . 0 0 ~ 3 7 2 .  
Line (4) (', = U.OlS990. 
Line (5) C., = 0.016910. 
Line (6) C6 = 0.12G000. 

It was for a long while impossible to dimover a method for 
computing these values of C,, C,, etc., because no velocities 
but only the dimensions of the outer sheath (1) were available 
for use. It is seen by the formulas that the dimensions of the 
vortes depend npon C, even when the (m, z )  are known, so 
that if the height z and the radius m are given at  successive 
points it is yet necessary to know C' before the velocities can 
be computed even approximately. The velocities ( u ,  L!, w )  all 
increase with C, and hence they are all greater in the interior 
in proportion to the approach to the axis; II increases but 1 7  

and 11' diminish with approach to the plane of reference at  the 
base of the cloud, as determined by the formulas in column 3. 

In  a vortes of this kind the simpled relation is that the 
ratios of the successive radii are equal and constant, so that, 
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m 
600.0 
424.3 
268.4 
189.7 
120.0 
84.9 
60.0 
$2.4 
34.6 
30.0 
26.8 
24.5 
22. 7 
21. 2 
20.0 
19.0 

MONTHLY WEATHER REVIEW. 

. . . . . . . . . . . . . . 
(600) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 
200 
125 
85 
60 
43 
35 
311 
25 
23 
22 
20 
19 
18 
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Ocean cyclone. 

If the values of the radii of successive isobars can be meas- 
ured, m, (outer), my, ms, . . . . m,, (inner) the value of p can be 
readily computed. The approximate radii of the circular iso- 
bars in hurricanes and cyclones can be thus measured on the 
charts, and from these the value of p, and log p, determined as 
a mean. Thus for four cases, i. e., the De Witte hurricane, 
the St. Louis tornado, a typical large ocean cyclone, and a 
typical large land cyclone, I have computed log p from the 
available data. ( S e e  Table 4.) 

TABLE 4.-VaZues of log p in emera1 worticee. 

Land cyrlone. De W. hurricane. 

B kl P 

0.20412 

0,19269 

0.21904 

0.16230 

0,23798 

0.22578 

0.19626 

760 

750 

740 

730 

7'0 

i 1 0  

700 

690 

Means . . . 0.20563 

1.6056 

s. L. t.ornad0. 

B k 7 P  
755 

745 

735 

725 

715 

0. ?I1413 

0."0413 

0.19382 

n. 3340s 

0.19139 

0.21388 

0.19629 

7a5 

695 

685 

0. ?0546 

1. 6049; 

B 
755 

i . i O  

745 

740 

i35 

0.10?66 - 
0.10914 l a  22 
0.10W3 

0,10959 I ' 5  
0.10400 

730 I .  
735 

720 

B l o y p  

(I. 111791 
760 

in5 

i 50  

745 

7411 

735 I 
0.43573 

B l o y p  
760 

7% . -  
i 50  

745 

7411 

735 I 
0.43573 

In  the hurricane and tornado, log p is practically constant 
and nearly the same in value; in the ocean cyclone i t  is con- 
stant outside of the isobar 730, but  increases in value toward 
the axis from isobar 730 to isobar 715, showing that the ocean 
cyclone is not a pure vortex near the center. I n  the land 
cyclone, log p is not constant, but enlarges in the same ratio 
that occurs near the center of the ocean cyclone, showing that 
the land cyclones do not follow the pure vortex law, even 
approximately. 

Since the Cottage City waterspout resembles the pure vor- 
tices of the tornado and hurricane more than the imperfect 
vortices of the ocean and land cyclones, it is proper to adopt 
log p = 0.20546 as an approximate value. It may be found 
that some such value of log p is a characteristic of the earth's 
atmosphere, when its small vortices develop freely; that is, it 
may be a typical constant, while other atmospheres may op- 
erate according to a cliderent constant. 

The current function constant, 
log = log (U a) = 2.60206, 

has been determined by a series of trials, which it is not nec- 
essary here to enumerate. I f  i t  were possible to measure the 
tangential velocity v a t  any point (al:) in the vortex, as, for 
instance, on the sheath, where it begins to expand rapidly be- 
fore merging with the cloud, then we should have + = II c = 
constant. Several such measures a t  different points on the 
sheath ( u1 tal), (va m2), etc., would give several values for the 
constant, and the mean could be taken as available thruout the 
vortex. This can be clone for the tornado and the hurricane 
on the ground, or a t  the sea level; but with the waterspout it 
is possible only to assume certain values of v at  a given height, 
z ,  measure E ,  compute the tube from the cloud to  the aea 
level, and by interpolation compare with the observed dimen- 
sions as taken from the photograph. It was finally deter- 
mined to adopt the following initial data: 

At height z = 100 meters. 
a = GO meters. 
c = 6.67 meters per second. 

log ~ = 2.60206 I log p = 0.20546 
Table 6 shows the manner in which the tube obtained from 

the computation to be given matches the dimensions scaled 
from the photograph, Chamberlain 3cl A. 

63-5 

TABLE 5.-Compa&on of the computed and obaerved radii, Chamberlain 
Jd A,  in meters. 

Height :. 

0 
1 
2 
5 

10 
25 
50 

100 
200 
300 
400 
500 
600 

800 
900 

1 000 
1100 

700 

* 1 millimeter ou photograph = 18.3 meters at the waterspout. 

There is some uncertainty in tracing the form of the vortex 
head near the cloud, but the darkening of the cloud in Cham- 
berlain :3d A and 3d B indicates that the vortex spreads out 
to about 1200 meters in diameter, something like the height 
of the cloud base from the sea level. This gives 600 meters 
radius near the plane of reference, as in the table. At the 
bottom the tube is surrounded by a lofty cascade, which pre- 
vents the measurement of the radius a t  the level 3 = 1100 
meters. 

The constants C are found at  first froin computations with 
log +, m, z on the level : = 100, using the measured radius 
ml, and applying log p to the log U I ~  by formula (30), in suc- 
cession from the outer to the inner tubes, which are supposed 
to be separated from each other by the pressure in millimeters 
of mercury, as determined by (49). An example of the pre- 
liminary computation is shown in full in Table 6. 

The results of Table 6, Section I ,  there colnpnted for the 
height ,-=lo0 meters, are entered in sections I, 11, 111, table 
7, in the appropriate line, and printed in heavier type. The 
other parts of these tables are to be computed from these 
data for all the other altitudes. Having computed the radial 
distance from the asis a t  all altitudes in orcler to find the 
radial component u .  it is only necessary to multiply UI by the 
C' of the respective lines; to find the tangentid component it is 
enough to multiply L( at  each point by the height z ;  and to 
obtain the wrtical component it is suf3icient to multiply -2C 
by the height u". I n  this vortex the component velocities and 
the coordinate distances stand in very simple relations, and 
this is probably one reason why the atmosphere tends to cir- 
cuhte  according to this simple solution of the second equa- 
tion of motion. 

An inspection of Table 7, Sections I, 11, 111, shows that the 
following facts hold true in regard to the velocities. The 
radial component 11 increases slowly upward thru the long, 
tapering tube till very near the cloud base, and i t  then 
increases very rapidly; i t  is greater in the interior of the vor- 
tes  than in the outside tubes, showing that the inner helices 
slope outward more rapidly than do the outer ones; it is 
probable that the extreme actual radial velocity in a horizontal 
plane near the cloud is practically about 5 meters per second 
where the tangential rotating velocity disappears. The tail- 
gential velocity decreases rapidly upward, especially in the 
inner tubes, and it increases rapidly from the outer tube 
toward the axis, where i t  may amount to 200 meters per sec- 
ond. or 467 miles per hour. It is not probable that such enor- 
mous velocities exist in the atmosphere even under vortex con- 
ditions, but a pure vortex evidently develops tremendous 
gyratory motions very near the axis. The vertical velocity de- 
creases ra.pidly upward, more so as the tubes diminish their 
dimensions; but  it increases toward the axis, where it may 
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0. 75085 
5.6 

1.50170 
2.00000 
3.50170 

9.10036 
0.12600 

9.85121 
0.7099 

attain the enormous velocity of 260 metera per second, or 559 
miles per hour. In the extreme total velocity, a t  the point 
where this computation ends, if the vortex actually develops 
so near the axis, we have, 
q5 = [ (0.13): + (146.7)'+ (107.6)' = 182 meters per second, 

or 407 miles per hour. 
In Table 8 are given the total velocity q a t  numerous points 

within the vortex, the horizontal angle i, which i t  makes in 
the plane at  the height z,  and a t  the point a, ~p with the tangent 
to the circle; also the vertical angle 4, which it makes at  the 

G,,+l =?!!. 
P 

e= i' 
d:. 

26 = c m. 

same point with the tangent. The angle i is 
positive outward and the angle 7 is negative upward in this 
system of coordinates. Section I of this table shows that the 
angle i is the same for each tube on a given section a t  the 
height z, and it increases upward slowly thru the long, taper- 
ing tube and very rapidly in the last 10 meters, where the 
motion of q is becoming asymptotic to the plane of reference. 
The angle q decreases upward and becomes zero at  the cloud 
base; it increases rapidly from the outer tube toward the axis, 
and seems to be limited by the angle 36' on tube 6. The 
angle of the pitch of the helix is steeper near the center of the 

(See fig. 1.) 

1.85121 
70.99 

- 1.40139 
-25. 199 

v = ? .  
rs 

U I  = - 2 cz. 

TABLE 6.-&ttage Oity Waterspout. Chamberluin, 3d A.  Computation of the radiua GI thruout the vortex. 
Assume n=60a t s=100 ;  log dl=2.60206; logp=0.20546. _ .  - .  

I 
I. Line. i3 J 

log n 

log i;l? 

n 

z 
my2 

log c 
C 

log Ca 
U 

log !!' m 
W 

- log 2 cz 
W 

0.95631 
9.0 

1.91262 
8.00000 
3.91868 

8.68944 
0. 04891 

9.64575 
0. U23  

1.64575 
44.43 

-0.99047 
-9.783 

1.10177 
14.5 

5.38354 
2. 00000 
4.32354 

1.77815 
60.0 

3.55630 
9.00000 
5.55630 

7.04576 
0.001111 

8.82391 
(1.06667 

(J. 82391 
G. 67 

-9.34679 
-0.222 

I .  5 m 9  
37.4 

3.14538 
2.00000 
5.14538 

7.45668 
0.002862 

9.02937 
0.1070 

1.02937 
10.70 

-9.75771 
-0.572 

le other 

1.36723 
23.3 

2.73446 
2. 00000 
4.73446 

7.86760 
0.007372 

9.23483 
0.1717 

1.23483 
17.17 

-0.16863 
-1.474 

8.27852 
0.01899 

9.44039 
0.8758 

1.44029 
27.56 

-0.57955 
-3.798 

These data can be ui..cl to test rrnulas g- .  en in Table 3. In computing from the 100-meter level "3 other 

values of (m z ) ,  we proceed as follows, showing as examples a few of the levels only for (7, = 0. 00111; m2 = 2- . 6;: . 
Radizcs a in all pUrt8 of the vortex. 

log L'i, log a log Z> 

~ 

m 
1.45631 
0.95631 
U. b0580 
0.71775 
0. 53376 
0.43563 

I I 
11. el log m, log mti log 3: 

03 

2. W269 
1.57269 
1.43218 
1.33413 
1.15014 
1. u5200 

I I 
0 

10 
100 
200 
300 
700 

1100 

m 
3.27815 
1.77815 
1.62764 
1.53959 
1.35560 
1.25746 

VJ 
1.86723 
1.36723 
1.21672 
1. 12867 
0.94468 
0.81654 

m 
1. 66177 
1.16177 
1.01126 
0.92321 
0. 73922 
0.64108 

m 
1.00000 
2.00000 
2.30103 
2.47712 
2.84510 
3.04139 

- m 
8.04576 
9.04576 
9.34679 
9.52288 
9.89086 
0.08715 

- m 
4.55630 
3.55630 
3.25587 
3.07918 
2.71120 
2.51491 

m 
1.25085 
0.75085 
0.60034 
0.51229 
0.33830 
0.23016 

I I 

I 111. E: a1 

m 
600.0 
424.3 
268.4 
189.7 
120.0 
84.9 
60. 0 
42.4 
34. 6 
30.0 
26.8 
24.5 
22.7 
21. 2 
20.0 
19.0 
18. 1 

m5 

m 
90.4 
63.9 
40.4 
28.6 
18.1 
12.8 
9.0 
6.4 
5.2 
4.5 
4.0 
3.7 
3.4 
3.2 
3.0 
2.9 
2.7 

a, 

373.8 
264.1 
167.2 
118.2 
74.8 
52.9 
37.4 
26.4 
21.6 
18.7 
16. 7 
15. 2 
14.1 
13.2 
12.5 
11.8 
11.3 

m 
232.9 
164.7 
104.2 
73.7 
46. 6 
32.9 
23.3 
16.5 
13. 5 
11.7 
10.4 
9.5 
6. 8 
8.2 
7.8 
7.4 
7.0 

m 
145.1 
102.6 
61.9 
45.9 
29.0 
BO. 5 
14. 5 
19. 3 
8.4 
7.3 
6. 5 
5. 9 
5.5 
5 .1  
4.8 
4.6 
4.4 

0 
1 
a 
5 

10 
25 
50 

100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 
1100 

m 
56.3 
39.8 
25.2 
17.8 
11.3 
8. 0 
5.6 
4. 0 
3 .3  
2.8 
2.5 
2.3 
3.1 
2.0 
1.9 
1.8 
1 .7  

I 1 
These computations need not be 

executed. 

For  the other values of C,b following Cl = 0.001111 it is sufficient to subtract log p = 0. 20546 from the values of log m, 
under Cl in  sucoession to  on0 another in Section 11. The log rn of Section I appears in its place in Section 11. 
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THE VERTICAL COMPONENT, -2cZ. vortex a t  the sea level than a t  any other point, the pitch 
diminishing upward and outward. The total velocity q is 
greatest near the axis a t  sea level, it diminishes rapidly outward 
and upward, and its magnitude near the axis is astonishing. 

!l%e time of the rotation of a particle on a given plane is found 
as follows. The length of the path is 2 sa, the velocity 'u; so 

TABLE 7-Cmtinued. III. 

(4) 
log w, 

(5) 
log U'6 

(3) 
log a 

0 
10 

100 
200 
300 
700 

1100 

--OD 

8.31679 
9.34679 
9.64782 
9.82391 
0.19189 
0.38818 

-m 
8.75771 
9.76771 
0.05874 
0.23483 
0.60281 
0.79910 

- m  -m 
9.57955 
0.67966 
0.88058 
1.05667 
1.42465 
1.62094 

-m 
9.990 t7 
0.99047 
1.2Y150 
1.46759 
1.83557 
2.03186 

--m 
0.40139 . 
1.40139 
1.70242 
1.87851 
2.24619 
2.44278 

9.16863 
0.15863 
0.46966 
0.645i5 
1.01373 
1.21002 

2 ira 
that t = ~. Take as an example the plane z = 1100. (See 

'U 

Table 9.) 
It takes 5.14 seconds to make one circuit about the axis a t  

the surface of the ocean on the outer tube, and 0.04 second, 
i. e,, one twenty-fifth of a second, on the sixth or inner tube. 
Subtracting the successive values of log t ,  (log t ,  - log tJ . . . , 
the result is 2 log p in all cases, so that the time of rotation in 
the different parts of the vortex can be computed from a few 
initial values. In this way it is seen that even a few isolated 
observations of the radius a and velocity u can be used to con- 
struct the entire vortex. A single anemometer record in a 
vortex at  a distance IU from the center of the track is there- 
TABLE 7.- Computation of the radial, tangential, and vertical trelocities thru- 

out the vortex. 
I. T H E  R A D I A L  COMPONENT, U=crS.  

11', 

~~ 

0 
-0.0022 
-0.0044 
-0.0111 
-1). 0222 
-0. U556 
-0.1110 
-0.133 
-0.444 
-0.667 
-0.869 
-1.111 

ll': 1 0 ,  

0 
1 
2 
5 

10 
2s 
50 

100 
200 
3UO 
400 
500 
6U0 
700 
800 
900 

1000 
1100 

0 
-0.0057 
-4.0115 
-0.0286 
-0.0573 
-0.1431 
-0.2862 
-0.671 
-1.145 
- I .  717 
-2.290 

--<I. 434 
-4.007 
-4.579 
-5. 1s2 
-5.724 
-6.297 

-2.562 

0 
- 0.0147 
- 0.0295 - 0.0737 - 0.1474 
- 0.3686 
-- 0.7372 - 1.474 

2.949 
- -  4.423 
- 5.898 
- 7.3i2 
- 8.847 
-10.32 

-13.27 
-14.74 
-16.22 

4 1 1 . 7 9  

0 - 0.0380 
- 0.0760 
- 0.1899 - 0.3798 
- 0. Y495 

n 0 
- 0.2520 
- 0.6040 
- 1.260 
- 2.620 - 6.300 
- 12.60 
- 26.20 
- 50.40 
- 75.60 
-100.80 
-126.00 
-161.20 
-1 76.40 
-201.60 
-226.80 
- 262.00 
-277.20 

- 0.0978 
- 0.1957 
- 0.4891 
- 0.9793 - 2.446 - 4.891 - 9.783 
- 19.57 
- 29.35 
- 39.13 - 48.51 
- 58.70 - 68.48 - 78.26 
- 88.05 
- 97.83 
-107.61 

- 1.899 

- 1.596 
-11.39 
-15.19 

- $798 

-18.99 
-22.79 
-26.59 
-30.38 
-3.4.18 
-37.98 
-41.78 

~ ~~~ 

-I. 333 
-1.556 
-1.775 
-2.000 
-2.222 
-2.444 

(4) 
log 11, 

(5) 
log 115 

fore of great value in theoretical meteorological discussions. 
A consideration of the forces of pressure involved in these 
velocities is suficient to see where the powerful destructive 
forces arise, whose effects are noted in the d6bris which mark 
the track of even a small funnel-shaped tornado tube. 
TABLE 8.-Thp angles (i, q )  which the current having the velocity of q makea 

with the tangent at (a, 9 ) .  

I.-HORIZONTAL ANGLE i t a n k  - . 
(Fig. I . * )  

( 3 

m m m 
9. 73583 
9.23483 
9.08432 
a. 991x27 

m m m 

0. .7w1 
9. !51al 
9. ,U(l,I)  
9.61265 
9.42366 
9. 331162 

~ 

1i6 

0 
10 

100 
200 
300 
701) 

1 la, 

9.32491 
8.82391 
8.67340 
8.58535 
S. 40136 
8,30322 

9. 53037 
9.02937 
8.878% 
8. i9041 
R. 60652 
8. 50868 

9.94129 
9.44029 
9.28978 
9.20173 
9,01774 
8.91960 

0.14675 
9.64676 
9.45524 
9. 40719 
9.22?.20 
9.12506 

1% 

.. 
8.81 228 
8.71414 

4 

m 
1.07U 
0.757 
0.479 
11. 339 
0.214 
0.151 
0.107 
0.076 
0.062 
0.054 
0.048 
0.044 
0.040 

0.036 
0.034 
0.033 

0. 038 

z 

m 
2.756 
1.949 
I .  233 
0.874 
0.551 
0. 5911 
0.276 
0. I95 
0.159 
0.1% 
0.123 
0.113 

0.097 
0.032 
0.087 
0.083 

0. iu4 

m m 

7.099 
5.020 
3.175 
2.250 
1.420 
I . U N  
0.710 
0.503 
0.41(1 
0.355 
0.318 
0.290 
0.268 
0.251 
0. '237 
0.225 
0.214 

0 
1 

5 
10 
25 
50 

100 
200 
300 
40U 
500 
600 
700 
800 
900 

1000 
1100 

7 

m 
0.667 
0.471 
0.298 
0.211 
0.133 
0.094 
0.067 
0.047 
0.039 
0.033 
0.030 
0. lY27 
0.025 
0.023 
0. 022 
0.021 
0.020 

m 
1.717 
1.214 
0.768 
0.544 
0.343 
0.243 

0.121 
0.099 
0. M6 
0.077 
0.070 
0. (165 
0.061 
0.057 
0.054 
(1. 052 

0.179 

4.423 
3.125 
1.978 
1.402 
0. Y35 
0. 626 
0.442 
0.313 
0.255 
0.221 
0.198 
0.180 
0.167 
0.156 
0.147 
0.140 
0.133 

(6)  
- 

m 

9.00100 
8.30104 
8. OOOOO 
7.5'2288 
7.30104 
7.15490 
7.00576 
6.95862 

(4) 

0 

00 
100 
300 
500 
700 
900 

1100 

? O  

- 

0 
10 
50 

100 
300 
500 
700 
900 

:loo 

?f, 

9.001110 
R. :a104 
R. wooo 
7.5'2288 
7.30104 

1.01576 
6.95862 

!.I5490 

m 

9.00100 
8.30 104 
8.00a,O 
7.52'288 
7.30104 
7.15490 
7.04576 
6 .  95862 

9.00100 
8. 30104 
8.00000 
7.52288 
7.30104 
7. 1 MY0 
7.0457fi 
6.95862 

9.00100 
8.30104 
8. 00000 
7.52288 
7.30104 
7.15490 
7.04576 
6.95862 

9.00100 
8. 30104 
8.00000 
7.5'2288 
7.30104 
7.16490 
7.01.576 
6.95862 

" I  

90 0 
5 43 
1 9  
0 34 
0 11 
0 7  
0 5  
0 4  
0 3  

0 ,  

9 0 0  
5 43 
1 9  
0 34 
0 11 
0 7  
0 5  
0 . 4  
0 3  

0 ,  

90 0 
5 43 
1 9  
0 34 
0 11 
0 7  
0 5  
0 4  
0 3  

0 ,  

90 0 
5 4 3  
1 9  
0 34 

0 7  
0 5  
0 4  
0 3  

n 11 

0 ,  0 ,  

90 0 
5 43 
1 9  
0 34 
I) 11 
0 7  
0 5  
0 4  
0 3  

90 0 
5 4 3  
1 9  
0 34 
0 11 
0 7  
0 5  
0 4  
0 3  

11. T H E  T A N G E N T I d L  COMPONENT. 71=CZt. 

Clj 
log c1 

(3) 
log I'y 

(5) 
log 

--(a 

0.52937 
1.02937 
1.17YS8 
1.26793 
1.45192 
1.55006 

--m 
0.94029 
1.44029 
1,59050 
1. fi7885 
1. 86284 
1.96093 

f I  
10 

- 
1.14575 
1.64576 
1.7Yti26 
1.8R131 
2.061150 
216644 

--cu 
0.32391 
0.81391 
0.97442 
1.06247 
1.246413 
1.34460 

--3o 

0.73183 
1.23483 
1.38534 
1.47339 

1.15552 
1.55738 

-a 
1.35141 
1 .8X21  
3. Wl72 
2.0SYi7 
2. 27376 
2.3i190 

w \  100 
200 
300 
i O l l  

l i o n  (1) 
~~ ~~ 

I: 

8. ozwi 
a. 37237 
8. 5'2288 
R. 76144 
8.87237 
8.94543 
9.00000 
9.04358 

(3) (5) (2) 

m 
8.22617 
8.57783 
8. 72834 
8.96690 
9.07783 
9.15089 
9.20546 
9.24904 

1'6 

~~ 

0 
7.1 

10.0 
15.9 
22.5 
35.5 
50. 2 
71.0 

1011. 4 
122.9 
142.0 
15s. 7 
173. Y 
125.8 
200.8 
213.0 
224.5 
235.4 

m 
8.43163 
8.78329 
8. 933SO 
9.17'236 
9.28329 
9.35635 
9.41092 
9.45450 

m 
8.63709 
8.98875 
9.13926 
9.37782 
9.4BR75 
9.56181 
9.61638 
9.65996 

m 
3.84255 
9.19421 
9.34472 
9.58328 
9.69421 
9.76727 
9.82184 
9.86512 

m 
7'4 

~ 

0 
2.8 
3.9 
6.2 
8. 7 

13.8 
19.5 
27. 6 
39. u 
47. 7 
55. 1 
GI.  6 
67.5 
72.9 
is. 0 
82.7 
87. 9 
91.4 

"6 0 
10 
50 

100 
300 
500 
700 
900 

1100 

E 9.04801 
9.39967 
9.55018 
9.78874 
9.89967 
9.97273 
0.02730 
o.oio88 

0 ,  

0 0  

0 
1 
2 
5 

I 0 
25 
50 

100 
2110 
300 
400 
500 
600 
700 
800 
900 

lU00 
1100 

0 0 
1.7 
2.4 
3.8 
5.4 
8.6 

12.1 
17.2 
24.3 
9. i 
34.3 
38.4 
42. 1 
45.4 
48.6 
51.5 

0 
4.4 
6.3 
9.9 

14.0 
22. 1 
31.3 
44. 1 
62. 6 
76.6 
88.5 
95. 9 

108.3 
117.0 
125.1 
132.7 
139.9 
146.7 

a. 7 
0.9 
1.5 
2.1 
3.3 
4. 7 
6.7 
9.4 

11.6 
13.3 
14.9 
16. 3 
17.6 
18.9 

21. 1 
22.1 

m. o 

1.1 
1.5 
2.4 
3.4 
5.4 
7. 6 

10.7 
15. 1 
IS. 5 
21.4 
23.9 
26.2 
28.3 
30.3 
32.1 
33. 8 
35.5 

0 ,  0 ,  0 ,  

0 0  
1 33 
3 28 
4 54 
8 28 

10 52 
12 48 
14 27 
15 54 

0 ,  

0 0  
2 29 
5 34 
7 51 

15 25 
17 8 
20 3 
22 28 
24 34 

0 ,  

0 0  
3 59 
8 53 

12 28 
20 58 
26 19 
30 20 
33 34 
36 16 

0 
10 
50 

100 
300 
500 
700 

1 LOO 
gno 

0 0  
0 36 
1 18 
1 55 
3 13 
4 16 
5 2  
5 43 
6 19 

0 0  
0 58 
2 10 
3 4  
5 18 
6 49 
8 3  
9 7  

10 4 

6 2 ' 2  
14 5 
19 33 
31 35 
38 26 
43 12 
46 48 
49 39 54.3 

57. 0 
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W 
100 
300 
500 
700 
900 

1100 
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9.72630 0.94268 0.95906 1.57544 2.19182 
0.17786 0.79524 1.41062 2.02700 2.64338 1 
0.89354 1.50992 2.13630 2. ,4268 3.35906 
1.22630 1.W268 2.459% 3.07544 3.69182 
1.44551 2.06189 2.67827 3 .3465 3.91103 
1.60922 2.22560 2.84198 3.45836 4,07474 
1.73993 2.35631 2.97269 3.58907 4.20545 

TABLE 11.-Continued. 

11.-LOG O F  THE MEAN . 

0. 0 0.1) 
14.0 14.0 

50 ’2.93149 1.49575 31.3 31.: 
lllu 3. 392,52 1. 646?6 44.3 44. - 
300 3.76964 1.884*2 76.7 7G.6 
.WU 3.!)914!1 1. 995i5 99.0 ! 8 . 9  
70U 4.137A2 2.068Sl 117.2 117.0 
900 1. 24676 2. 1‘3339 132. 9 1:U.i 

1100 4.33391 ?.11;696 146.9 116.7 

1: ~ 2.2925? 1. 1421; y = ?::.(I6 4-z. 
B 

( T =29?.iO, Tnl,lr 51. 

( E =763 3mm, T;ildr 51. 

v5 = p = 141.0 meters p r  second. 

For - A B= 97.4mm, 76:i.3-665.9=B1-BS. 

1% P,>, 

0.04827 
0.04s77 
0,05077 
0.05x’26 
0.06324 
0.07332 
n. OSEO 
0. UY319 
0.10.11s 

288.8 
379. !I 
475.1 

0 
10 
W 

100 
300 m 
700 
YO0 

1100 

.......... 1 ..... 
9.8 I 

49.3 
99.3 

304.5 
519. 3 
743.9 
978.6 

1233.9 

............... 
25.3 , 

127.0 1 
255.5 
i s 4  2 

1337.4 
1916.1 1 
2.520. 7 
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The resulting difference of pressure between successive 
rings, a t  each successive elevation, is given in Section 111, and 
the corresponding pressure differences in millimeters of mer- 
cury in Section IV.  Hence, on the level z = 1100 meters, near 
the surface of the water, we have, 

ab 1 7  z, 2 . 7  z, 4 . 4  ad 7 . 0  z2 11.3 .il 18.1 
B6 509 0 B, 665.9 B, 536.8 B, 750 5 B, 759 7 B, 763.3 

so that the dif-ference of pressure between ring m5 ant1 ring m1 
is equal to 97.4 mm. = 2.835 inches of mercury. By the ther- 
modynamic computations on the waterspout summarized in 
Table 51, MONTHLY WEATHER REVIEW, August, 1006, it was found 
that the difference of pressure between the cloud base and the 
sea level is 91.3 mm. = 3.595 inches of mercury. It is not 
too much to suppose that this difference, 97.4 - 91.3 = 6.1 mm., 
is due to two causes, (1) an imperfection in the value of the 
density log p = 0.10318, which should probably be taken less 
in the interior of the vortex than on the outside; and ( 3 )  the 
fact that the inner ring of the vortes which actually develops 
in nature may not exactly coincide with mB = 2.7. That is, the 
central calm may not be exactly 5.4 meters iu diameter. In- 
deed, the solution of the equations for Bessel’s functions, 

-- “(p + a?r  = ,) , i)m‘ m i ) m  
which can be derived from the vortex equation, 

1 39 a:+ 
a m2 m Om c):> 
~ --- + 0 = 2 a w p ,  

results in a root, a m = 3.832. It is probable that n = 1, and 
it has been taken as unity in the formulas for this waterspout, 
so that mo = 3.833, which is the radius of the closest vortex 
tube to the axis. My computation carried the development to 
m6 = 1.70 meters, but i t  should probably stop short of m, = 2.7, 
tho a t  what point it is not possible to decide. 112 n i n y  w/i-  

clitde that the innermost pressure: of the vortex at the sen lei-rl 7 s  

aboiit equal to that at the cloud leuel front wheiice the vortex was prv- 

473 

jected. This view can be strengthened by the following con- 
sideration. In  a pure vortex of this type the rotating velocity 
nest to the calm core a t  any level is apparently equal to that 
of a body falling freely from the plane of reference thru the 
distance 2 ,  SO that t i a  = 2 92. 

TABLE 12.-Compnrison of t i s  wtth v a d  q. 
p ~ - -  ~~ ~- ~~ ~p 

p~ ~- Pp _ _ _ _ _ _ _ _ ~  
The close agreement between the value of the falling veloc- 

ity, c 7 Jag=, and t.5, the velocity on the edge of the core, as 
given in Table 7, Section 11, seems to indicate that this is a 
possible way in which to begin the discussion of such vortices 
in the atmosphere, or a t  least to check the results, as in this 
instance. 

By plotting the points in a curre indicated by the ooordi- 
nates ( m, E,, -B,,+l), as given in Table 6, 11, for the radial 
distance m, and in Table 11, IV, for the differences of the 
pressure between successive rings, i t  is found that they form 
a logarithmic curve, and consequently the logarithms of these 
coordinates plot on a straight line. The computation shows 
that 

log . a , I  =- log 1’ = =0.20546, 
E,,+l 

S O  that the logarithmic relation between the spaces within 
the successive vortex tubes and the corresponding pressures 
is thus determined. This value of log p = log% = 0.20546 

is fundamental to the structure of a vortex, and it seems to be 
an atmospheric constant which should be carefully determined. 

The thermodynamic energy which generated this water- 
spout may be attributed to two principal sources. The first 
is the vertical rise of the lower strata induced by the general 
cloud motion and due to the overflowing cold stratification. 
The cloud generally rises in the central portions and falls on 
the edges, and this upward buoyancy is converted from a 
broad surface at  the cloucl base into a narrow vortes tube, 
iiiJiwri)2 the cloud surface tlescrnds in a small uwa to the sea lei*el. 
The second source of energy is the horizontal pressure flow 
of two strata of different temperatures, SO that the pressure 
shall remain the same on each side of the surface of discon- 
tinuity. This subject will be hken  up at  length in the later 
papers of the series, but it may be noted here that the follow- 
ing relation holds: 

m,,,, 

RELATIUN (JF THE TENPERATURE T O  THE VORTEX MOTION. 

First stratum: - 

I n  order that on the same boundary, where 3, = z2, the pres- 
sure shall be the same, PI = P,, after subtracting there will 
remain, 
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PI 4 ( V I *  - ql7 = PI 4 (u,3 - %?- 
From the general law, 

P, = p1 RT,. 
P, = pI RT,. 

r T, 
TI 

For P, = P?, p ,  = L. 

pn 

Substituting, 

Hence, Tl ( u12 - u,") = pa (u,? - (1,'). 

T, ( ~ , 2  - ~ 9 ~ ' )  = T L A  (tl.' - (7 0 , ) .  

The relative velocity of one stratum, ( ~ 1 ~ :  - P ~ ~ ) ,  multiplied 
by the temperature of the second, T,, equals the relative 
velocity of the second stratum, ( ~ 1 ~ '  - ~ 1 ~ ' ) ,  multiplied by the 
temperature of the first, T,; and this maintains the pressure 
as i f  the air had no motion, and the temperature gradients 
remained normal. The first type of vortex with the funnel- 
shaped tube depends upon the first principle more than upon 
the second, while the second type of vortex with the dumb- 
bell tube depends upon the second rather than upon the first. 
This will be illustrated by the Chamberlain 2d A, the St. Louis 
tornado, and the De Witte hurricane. The ocean cyclone has 
in addition to these two sources of motion a third, similar to 
the last, but modified by the fact that the boundary of the 
stratification between the cold and warm masses instead of 
being horizontal is vertical in part, as shown by the tempera- 
ture distributions in cyclones and anticyclones up to 10,000 
meters. The land cyclones depend more decidedly upon the 
third source of motion than does the ocean cyclone. 

11.-THE THEORY OF VORTEX MOTION APPLICABLE TO THE 
DUMB-BELL-SHAPED TUBE IN THE COTTAGE CITY WATER- 
SPOUT. 

~ 
THE DUMB-BELL-SHAPED TYPE, COTTAGE CITY WATERSPOUT, CHAMBERLAIN 

2D A. 

An examination of the photographs of the Cottage City 
waterspout given in the MONTHLY WEATHER REVIEN for July, 
1906, pp. 307-315 and Plates I-S, shows that two distinct forms 
of the tube or types of the vortex were developed at  different 
times from the same cloucl. At the second appearance, 1:02 
p. m. to 1:17 p. m. (Plates I-VII), the dumb-bell-shaped type 
prevailed (see Chamberlain's photograph 2d A); ancl a t  the 
third appearance, 1:20 p. m. to 1:27 p. m. (Plates VIII-Y.), 
the funnel-shaped type was exhibited. In  all accessible photo- 
graphs of tornadoes these two types occur quite indifferently 
in numbers, apparently developed by subtle differences in the 
physical conditions of the cloud a t  the several occasions of their 
formation. While both types are of theoretical interest, i t  is 
much more important for the meteorologist to understand the 
dumb-bell type,because the large tornadoes, the hurricanes, and 
the cyclones in part, are constructed upon the same principles, 
differing from one another only in their dimensions and pro- 
portions. Since the ultimate explanation of the motions of 
the atmosphere in cyclones and anticyclones seems to  be very 
closely associated with the theory of dumb-bell vortices, it will 
be proper to keep in mind the goal toward which this present 
exposition tends. 

It can easily be seen in the photographs above referred to, 3cl 
A to 2d G, inclusive (Plates I to VII), that the tube, instead of 
continuing to taper from the cloud to the sea level, reaches a 
minimum diameter more than halfway down from the cloud to 
the sea and then begins to expand. The lower portion is not 
entirely visible, on account of the enveloping cascade of spray, 
and it will be shown in these papers that, in fact, the lowest 
section is not fully developed, and that the vortex tube is 
amputated or truncated by the sea-level snrface a t  from one- 
twentieth to one-third of its theoretical length, according to 
circumstances. The corresponding upper section is fully de- 
veloped a t  the cloud, tho the tube and the cloud merge into 

one another before the asymptotic extension of the vortex is 
reached. When the tube begins to break up, and the gyratory 
velocity diminishes, the dumb-bell form appears more clearly, 
as on 2d F, and it is very distinct on 2d G. I n  the earlier 
numbers of the series, 2d A to 2d E, the inner tubes of the 
complete vortex, which have very great velocities, are formed, 
but the outer tubes appear as the rotation velocity falls in 
amount. 

According to the formulas of the first paper of this series 
(compare Table 3 and Cloud Report, 1898, page 613), we begin 
with the vortex system exprest as follows: 

1 1  m 0, = - = Am2 sin az. 
a 1. Current function. 

2. Radial velocity. 7[=-  am am ~~ - cos az. 
m 82 
a+ 
m 

mi lm 

3. Tangential velocity. u = ~ = d a m  sin az. 

4. Vertical velocity. 10 = !? = 2 A  sin a?. 

APPLICATION O F  THE FORMULAS TO THE COTTAGE CITY WATERSPOUT, 
CHAMBERLAIN 2D A. 

The primary difference between the funnel-shaped and the 
dumb-bell-shaped vortex tube is that the former extends from, 
its asymptotic relation a t  one plane of reference, in the base of 
the cloud, perpendicularly to a great distance from it, taper- 
ing continuously to a tube of very small dimensions, while the 
latter becomes asymptotic to two planes of reference, one in 
the cloucl base and the other a t  os below the surface of the 
sea. Not only is the distance between the two reference 
planes to  be measured in meters, but the axis or connecting 
line is also to be divided into lS0 parts or degrees. Thus, in 
Fig. 3, assume that the upper line is 1200 meters from the 
lower line, that the axis is of the same length, and that this 
represents the entire vortex. I f  this length is taken as 180" 
or parts then the a appearing in the formulas is 

a= ~ - 0.150 [0.17G00], 
1200 - 

which gives the angular change per meter. Since the symmetry 
of the formulas, as controlled by the sine and cosine terms, 
shows that the variations lie between + 1 and - 1, it follows 
that sin a r ancl cos a z will carry the function thru all the inter- 
mediate values. Fig. 3 is constructed by plotting the lines 
determined by the coordinates of Table 17, which gives the 
radii m of the several tubes at  different heights z. 

Since there is no way to determine the value of the tangen- 
tial velocity a t  any given point, i t  is necessary to assume a 
value for u at  a point (m, z ) .  .The correctness of the one adopted 
can be checked by constructing the vortex from these data, 
and comparing it with the shape as shown on the photograph. 
The height z was determined as about 1200 meters by the 
measurements, and after several trials I have taken 

a z = 170° or 100, 
m = 200 meters, 

I' = 
The value a. = 10' is for a point near the sea level, and 
the value a :  = 170" is for a point just below the cloud base. 
Hence we have the current function, 

For the value of the ratio of the successive radii, a t  the points 
separated by 10-millimeter intervals of pressure, as 760, 
750 . . . . . . 690, we shall assume the same value as that given 
on page 169, whose logarithm is, 

2 meters per second. 

= L'CV = 400 [2.60206]. 

log p = 0.20546. 
These data enable us to proceed with the coinputations in 

the regular order, and to develop the entire structure of this 


